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CONVECTION OF A PATTERN OF VORTICITY THROUGH A SHOCK WAVE ‘

By H. S. RIBNFJB

SUMMARY

An arbitrary weak spa.iiz? didribution of corh2i.ty &a be
represented in terms of plane tinuwidd dear wavtx of all
orienlaiiom and wuvelength (Fourier intqral). The anulyti
treats the pamage of a &ing.?erepre%nt.aliveweak 8hear u-we

througha plaw dock and shows refraction and modijkation of
the Amr wave m“ths-irnu.ltaneousgewation of an aeowdicdly
intense sound wave. Applieabw to turbulence and to &e
in supersonic wind tunnels are indicated.

INTRODUCTION

Turbulence such as the residual small eddying motion in a
wind-tunnel stream will gradually deeay as it is carried along.
The. decay process has been the subject of much study in the
face of formidable difficulties. The random oharacter of the
motions has been successfully handled by the methods of
statistics; even with these methods, however, the non-
linearity of the equations governing the intermixing processes
has severely limited the progress attainable without sim-
plifying assumptions

On the other hand, for relatively sudden changes in
turbulence, such as occur when it passes through a wire-
mesh damping screen, the decay may be negligible and the
changes may follow linear laws. The linearity is assured if
the turbulence constitutes a sufficiently small perturbation
of the main stream. Recently it has been found that the
problem of such linear changes emdd “be solved completely
by a specialized adaptation of the spectrum concept of the
strkist.icd theory of turbulence.

Severrd of these linear processes have been treated in this
manner: the damping-screen problem (ref. 1), the passage of
turbulence through a sudden wind-tunnel contraction (ref. 2),
and the passage of turbulence through a series of screens
followed by a sudden contraction (ref. 3). A basic tech-
nique for such problems has been evolved in these papers.

The present paper is motivated by another problem of
the same linear character, namely, the convection of weak
turbulence through a shock wave. Among other circurn-
strmces, this problem arises in the interpretation of measure-
ments with a hot-wire anemometer in a supersonic strewn,
beeause a detached bow wave stands ahead of the wireg

ISnperwfe$X’ACA TXT233!, “Convectionof a Pattern of Vortfelty Through a Shock
Wnvo”by H. S. Rlbner, 19S3.

! A simplelnterprotntlonfornlfbut ~erysmalleddks cmmfmrablewith thesmleofthe bxv
WIWOIs, bowewr, nvaihbleIn the workof Kovtiy (ref.4).

Such a curved shock is not attractive for theoretical analvsis.
but it is not MEcult to replace it with an estended p~an~
sho& by use of wxiliary means;” attention can thus be
limited to the convection of turbulence through a plane
shook.

The conceptual basis for the treatment of these linear
problems is as follows: An arbitrary weak spatial dis~bu-
tion of vorticitv—and hence a {e& tur~ulent velocitv
field-can be re~resented as a superposition or spectrum ~f
plane sinusoidal shem waves distributed amoqg all orienta-
tions and wave lengths. This is a physical interpretation
of the mathematical formulation as a Fourier integral; 3 the
individual shear waves may be identied as Fourier or
spectrum components. When the turbulence wave pattern
is convected through a screen or through a shock wave. the
individual waves are altered without mutual interference if
the waves are suitably weak. Thus the modified field
downstream of the screen or shock can be obtained, in
principle, by superposition of the modified individual waves.
In practice the description of the detailed spatial distribu-
tion of velocity, either initially or iimlly, is hopeless; the
initial wave distribution is known only startistically (e. g.,
the phase angles are unknown), and statistical cha&~ o~~
can be &dculated. In either case the analysis of the be-
havior of a representative single wave eonstitutes a pre-
requisite to the determination of the changes in the weak
turbulent field.

In the present paper such an analysis is carried out for a
singleshear wave, of arbitrsg inclination, convected through
a plane shock. There remains the task of calculatimzthere-
fr~m the changes in the statistical properties of a we&; turbu-
lent field convected through a shock. Suitable procedures
have been developed in references 1 and 2; for their applica-
tion the present results, which tie formulated in two dimen-
sions, must be reexpressed to btig out the spatial inclination
of the wave in t~ee dimensions: The Procedures will re-
quire some modification before the-noise-field generated by
the interaction can be treated.

JThe Mr@ty Seldm mpi-esmtcdmay h eitherretatkomlor frrotntbml witblntheSIWCI-
tled@en, even thoughthe ‘%nf!dingblo&$” the .!bmrmm, are rotatbnel. In ca.wan
frmtatiensdfieldIs repremnt@ the vmtIdty of thew sbmr vmv@ but not the velodty,
mntrmflymnm19within the 5pedfkdregfon(wlddImay b multiplyconneetml),Imvfnga
dish-fbntbmof vortlelty tn tk externalsp.aea. The frmfatfenal410wmay h regardeda9
lndwxd by tbfs external vortkfty.

TII+s remarksINIreferto a velwlty fieldMY@ theIneomprssildeccmtbmltyequatfcm
a .nrmU-rwtnrkdbmtleldof vortklty in flnfdat rest, or wnrecbxl by a mafn- vdlf
fn~ this wndltbm.
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FIGURE 1.—Convection of plane oblique sinusoidal shear wave through
shock: original unsteady-flow problem.

This single-wave problem is also treated in reference 5.
The analyses bear little resemblance: Iq that work a refer-
ence ikne is used in which the flow is unsteady, whereas
herein a fkame is used in which the flow is steady. Sound
waves are likewise treated in the work cited.

The outline of the present analysis is as follows: The prob-
lem is posed as the calculation of the flow field behind a plane
normal shock wave due to the convection through the shock
of an inclined plane sinusoidal shear wave; the shear wave is
specified to be weak to ensure small perturbations to the
mean flow. This problem, for which the flow is unsteady in
time, is converted into an equivalent steady-flow problem
by transformation to a moving frame of reference. Ii this
frame the normal shock is replaced by an equivalent oblique
shock.

The analysis is now formulated as a bounda&value prob-
lem for the flow in the region downstream of the shock:. The
governing partial differential equation for this small-pertur-
bation rotational flow is derived (extension of Sears’ work,
ref. 6); koundmy conditions on the velocity components just
behind the shock are obtained from the oblique+hock rela-
tions; and finally the rotation term in the governing equation
is evaluated in terms of gradients of entropy and total
enthalpy, with use of the entropy changes across the shock.
The initially unknown perturbation of the form of the shock
wave is taken into account in the boundary conditions and
rotation term by assuming it to be sinusoidal with initially
undetermined amp~tude and phase.

The velocity W (all symbols are defined in appendk A)
downstream of this equivalent oblique shock may be either
subsonic or supersonic depending on the inclination of the
initial plane shear wave; separate solutions of the boundary-
value problem are worked out for the two markedly difFerent
cases. The horizontal shear wav~vvhich % a simple
special case for subsonic W—is given a separate treatinent.

The analysis of the velocity field downstream of the shock
is followed by an account of the asociated pressure, density,
and temperature fields there and of the distortion of the ini-
tially plane shock. Finilly, the acoustic level of the (fluc-
tuating) pressure field is worked out in approximate fashion
for an example applied to a supersonic wind tunnel: A par-
ticular initial intensity of turbulence is assumed and con-
sidered as being concentxated in a single shear wave rather

:-../
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FIQUEE2.—Transformation to equivalent steady-flow problem by
superposition of velooity V.

than distributed throughout a continuous spectrum. The
c~culation amountsto an estimate of the noise level generated
by the passage of a specified level of turbulence through a
shock wave.

This investigation was conducted at the NACA Lewis
laboratory.

FORMULATIONOF BOUNDARY-VALUEPROBLEM

The unsteady-flow problem.—!l?he inclined plane sinu-
soidal shear wave is shown schematically in figure 1, The
floiv is viewed in a plane perpendicul~ to the shock and to
the wave ilonts. The wave is supposed to be convected
downstream by the maig stream with velocity U~ so that it
passwsthrough the normal shock. The passage through the
shock is evidently an unsteady process, since the intercepts
of the inclined lines (the nodes of the sine wave) move down-
ward rilongthe shock front it will be ahown that a disturbance
ripple moves along the shock with the same speed V.

In the general case of a plane oblique sinusoidal shear
wave there will also exist a perturbation velocity component
normal to the plane of the figure. Now the ripples in the
shock front will be two dimensional, and the shock with the
ripples will still be everywhere perpendicular to the piano of
the figure. Thus, the normal velocity component will be
parallel everywhere to the shock and will be unaffected as the
shearwave passes through; the component will have rio other
e.lfect. Its invariance established, this norm+ velocity com-
ponent w-illbe omitted from the analysis.

The equivalent steady-flow problem.—If an observer
moves downward along the shock with a speed V, relative
to him the flow will have an apparent upward velocity com-
ponent V. This scheme of things is shown in figure 2. In
particular, V has been chosen so that the resultant stream
velocity (relative to the moving observer) is alined with tho
velocity in the disturbance wave; that is, V= UAtan O. The
Dbserverthen sees what appears to be a steady sinusoidal
hear flow passing through an oblique shock wave. Thus, by
the proper “choice of a systam of moving uses the original
unsteady-flow problem has been converted into an equivalent
Jteady-flow problem. .
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FIOTJIW 3.—Symbols and coordinate sxs.

Governing partial differential equation for rotational
flow.-The task of the analysis is to calculate the flow field
on the downstream side produced by the passage of the sinus-
oidal shear flow through the equivalent oblique shock. It is
to be expected that the shock will be perturbed from its mean
plane and will, in fact, develop a corrugated appearance.
Becrmse of these corrugations, vorticity (rotation) will be
introduced into the downstream flow. This vorticity and all
the downstream velocity perturbations will be weak com-
pared with the stream velocity because the origid disturb-
ance wave has been assumed weak. Thus, a small-perturba-
tion, or linearized, treatment of the flow field is permissible.

In reference 6 the governing partial d.iflerentirdequation
for small-perturbation compressible rotatiomd flow has been
derived for isoenergetic flow, that is, for flow of constant
stagnation enthalpy. However, the shear wave under con-
sideration possesses variable stagnation enthalpy; that is,
preesure, density, and temperature are constant upstream of
the shock, but the velocity varies. It has been necessary,
therefore, to obtain a more general governing equation that
applies when both entropy and stagnation enthalpy are
variable. The derivation is given in appendk B.

This governing equation is expressed in terms of coordi-
nates $and n, ~being the distance in the main stream direction
and. q the distance perpendicular thereto. The equation
reads

(l–w’)#tt+h=+#–# =–f2 (1)

where W is the stream velocity in the transformed problem,
~ is the corresponding lMach number, His the stagnation
enthalpy, s is the entropy, T is the temperature, Q is the
vorticity, and ~ is a perturbation stream function such that
~ =w=perturbation velocity in ~ direction

– (1– ~~#t=w’=perturbation velocity in q direction1
(2)

(The stream function is defined ditlerently in ref. 6, as it
involves an entropy term.)

For application of equation (1) in the present problem
reference should be made to figure 3 for the direction of the

— Lhpsrlurbed
— Perturbed

FIGURE 4.—Geometioal relations aorms shock, with and without
perturbation u in shock angle.

axes. In this figure W is the resultant stream velocity down-
stream of the shock (in the moving frame of reference), and
the ~and q axes are indicated. The final flow pattern depends
crucially on whether W is subsonic or supersonic; the criterion
depends, in turn, on the Mach number corresponding to U4
and on the wave inclination 8.

Boundary conditions,-The boundary conditions just
downstream of the shock will now be obtained by application
of the shock-wave relations.

By geometry (fig. 4) the stream velocity components
normal and tangential to the undisturbed shock are, respec-
tively,

U.=w. cm o

v= w. sin o

The shear wave will provide directly a perturbation W4to WA
and will cause indirectly a perturbation u(y) to the shock-
wave angle, of initially undetermined magnitude. The
effect of u is equivalent to an increment in & The as90-
ciated perturbations to U_ and V are found by obtaining
their respective diflerentiils and replacing cZWAby w*,and dt9
by a therein; the results are

du.=W. COS8—U~. Sin0

1
(3)

dV=wA sin L9+uW* cos e
.

The corresponding change in normal velocity U downstream
of the shock is obtained from the normal-shock relation

73~A2
u. 2—=
u ~+y—l —

-+LA’
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By logarithmic diffemntirationand use of the fact that the

-(upstream temperature is constant whence

there is flmdly obtained

dU dU’
( )

~ ~7—lm—=—_ ._
U u. 7+1

where m = UA/U.
On the downstream side of the shock the velocity perturba-

tions in the directions of g and ~, respectively, are (fig. 4)

wo=(U+dU) COS(q+u)+(V+dV) sin (q+u)—W

1
. . (5a)

W.’= — (U+dU) SiIl(P+a) + (V+dV) COS (;+ u)

Equations (3)”and (4) may be used to evaluate the right-
hand side of equation (5a). A firsbxder approximate result
is obtained by taking cos a= 1, sin U= uand neglecting u tan q
and u cot pin comparison with unity. It will be useful &o
to introduce the geometricsd relation UA=Wd cos 8, the
definition UJU=m, and to eliminate 8 by means of the
oblique-shock relation tan p=m tan O. The iinal rearranged
result is

w~ ( )(—=—+—:tan p ~_27—1
u )

— m cos P+
A y+l

( )
~ tan p+mm sin p

1.

(5)
WO1

( )(
—= ~—; tan $0

~_27—1
u )

—m sin P+
T+ 1

( )
% tSII Q+7T?IS COS ff3-IS :eC p
TV.

These are the d&ired boundary conditions in a somewhat
geneml form.

h the present problem the perturbation w. is associated”
with rm incident sinusoidal shear wave parallel to ~d (or to
~) (figs. 2 and 3). It will be shown later that a refracted
sinusoidal shear wave parillel to lV’ (or to Q will also arise.
A suitable defining equation for WAis .

wA
m=e’cos ‘Vd (6)

where k is the V&ve number (2~/lc=wave length). The
corresponding argument for the refracted shear wave will
involve q and an altered wave number K. The arguments
of the upstream and downstream waves must match along
the shock front, so that

kq.=q along shock

By geometry (fig. 3), ~=- Thus

w.{
m

‘C ms K~ dO~ shock

o

(7)

Siice the disturbance is
can likewise be expected

sinusoidal, the shock inclination
to be sinusoidal. For generality

u

a

phase shift can be allowed for, so that u can be assumed to
have the form

a=e(~ COS K~+b Sin ,@ (8)

Substitution of these sinusoidal relations into the general
form of the boundary conditions, equations (5), yields, after
rearrangement,

I

[(w. a—— )l—2@m+mS sinf9—
D— m T+!.

(
–1l_2L

) 1
sin~$0m cos fO+— Cosy+l Cos q

In)+

[(: l_2ti
)1

m+mz sin p sbi~
‘y+l

wo~—
[( )

–~ l+% m ‘*+n— COsp

( )1
a(m—l)cos P+2 l—~m sinq cosq+

[(
–~ l+~m

) 1
‘*+ b(m–l)cos p sin Kq

(9)

Equations (9) give, in final form, the conditions imposecl
by the shock wave on the components pamllel to f and q,
respectively, of the perturbation velocity immecliatoly
behind the shock; the parameters a and b therein governing
the shock inclination u are undetermined. These equations
constitute the boundary conditions for the pertwbation flow
downstream of the shock.

Evaluation of rotation term in governing equation,-Before
equation (1) can be solved, the vorticity term (rotation
term) on the right-hand side must be evaluated for the
region behind the shock. A corresponding term has boon
evaluated in refeience 7 for the flow behind a normal shock
perturbed by an isoenergetic upstream disturbance. This
work has proved a useful guide, but it has beennecesmry to
make modifications both for the variation in energy (that is,
in total enthalpy H) and for the inclination of the shock in
the - moving frame of reference. The derivation is ns
follows :

Downstream of the shock, the enthalpy H and tho entropy
s (and hence the vorticity) are constant along stremnlines,
and in the linear theory the streamlinesme approximated by

lines q=constant. Thus, ~~ and $ may be evwluatod fit

the shock and the remilt will hold downstream thereof if
espressed as a function of T alone (: elirnimted).

The total-enthalpy upstream and at the shock is

H=cPTA+$ (WA+WA)’

=CPTA+~ WA*
(1+$%9 ~

Hence, at the shock

y= W.2 -Q-(+
aq w.

dOllg shobk (lo)
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Tlm cmtropy upstream of the shock is constant by virtue
of the assumption of constant pressure and density th~re.
Tlm entropy change in crossing the shock is given in terms
of the upslmmmvelocity by (ref. 8, eq. 144):

A ‘n{[
‘y-127 (W.+75A)2cm’(8+++ ~8—8A=— —

1
—x

7+1

[

(1’– 1)(WA+=A)2 cos’ (O+ U)+ 2 7

(?’+ l)(~A+~A)’ cOS2 (O+a) 1}
Hence, on writing the differential and expanding the result
under the assumption that TAis constantand w.JIT~ and u
mmsmall, tbero is obtained

tis=g(m
(

—1)2 *—u tan 8
)

1

(llrl)

and alo~~ shock
a8 UZ—=—

(~q T (~–1)’$ *A–U tan O)
(11)

RccrLllnow that the governing equation (1) reads

where the right-hand side is the rotation term in question.
The factom H, an~ s, have been evaluated in equations (10)
and (11), respectively; substitution &th use of the geometri-
cal relation9 of figure 3 yields

whoro the right-hand side is to be evaluated alo~a the shock
(x=O) and mpresscd M a function of q alone.

In the form (12) the governing equation has not yet been
specialized to a shear flow that is sinusoidal. The substi-
tution of cqu~tions (7) and (S) for wJ17A and u, respectivel~,
introduces the sinusoidal character; furthermore, the relation
tan p=m t%n 0 can be used to eliminate 6; after simpli6ca-
tion

{[

(m–l)z
—K secq+2(m-1) cos q+a ~

1
Sinvx

sin K,+Kb @-1)2 sin@ Cos K, (,3)m }

13quation (13) is the partial differential equation to be
satisfied by the flow downstream of the shock subject to
the boundary conditions (eqs. (9)).

SOLUTION FOR HORIZONTAL WAVE

The governing equation and boundary conditions have
been set up for the general case of an inclined shear wave.
It will be worthwhile to solve first, however, the much
simpkw special case of the horizontal shear wave. The

remdts will illustrate important featnrea of the general case
as well as provide a limiting case of the general solution,
useful as a check.

The horizontal wave is obtained by setting 19=w=0 b
the earlier equations; as a consequence T~~O, TV~U, .@z,
~~y, and -k. The go~erning equation reduces to

iW~+%=–k.U@m-1) sin ky (14)
where

p=l–p

The boundary conditions (eqs. (9)) reduce to’

(g=%=—1—274
)

m cos ky
‘y+l

I

I

(15)
—=~=(m– 1) a cos ky+(m–1) b sin ky

“ % 776

Particular integral and complementary function,-A par-
ticular integral of equation (14) may be obtained by inspec-
tion as

. .
To obtain a complete solution there must be added a com-
plementary function satisfying equation 114) with the right-
lmnd side set equal to zero. The boundary conditions at
z= Orequire that the function possess a sinusoidal variation
with y. Such a solution will also contain an e.~onential
factor, showing either amplification or attenuation of the
disturbance with distance z downstream of the shock; the
case of amplification must be ruled out as physically unac-
ceptable. These considerations limit the solution to the
form

#c= Uede—:sin ky

where d is a constant of integration.
The complete solution is the win of +F and *c:

(16)

Evaluation of undetermined oonstants.-The velocity com-
ponents are obtained from equation (16) as

(
b

)U=$r= UE 2m—l+kde~ cos

b
v= —B2+,=13UEkde–~ sin ky

kyI (17)

The undetermined constants a, b, and d are evaluated by
setting X= O and comparing with the boundary conditions,
equations (15), equating the respective coefficients of sin ky
and cos ky. The results are

a=() \

d– 4m‘–k(~+l) }

(18)
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. Shock

FIGURE 5.—Paseage of horizontal shear wave through normal shock,
showing perturbation of shock and final amplification of shear
wave.

Velooi~ components.-Insertion of the value of d inti
equationa (17) yields the iinal result for the velocity com-
ponents valid everywhere downstream of the shock

Just behind the shock.

and far downstream

u.= ~c(2m— 1) cos ky

1
z= w

v==0

(19)

(194

(19b)

These results and the associated streamline pattern are
exhibited pictorially in figure 5.

These perturbation velocity components downstream of
the shock are to be compared with the corresponding
velocity components in the shear flow upstream-of the shock
(cf. eq. (7)):

uA= UA~COSky

=Uem cos ky I

VA=O

The ratio of umlu~is

5=2—L
uA m, (20)

Since m= UA/U>1 in order that a normal shock esist, it
appeara horn equation (2o) that the normal shock always
amplifies the horizontal shear wave, the mrmi.nmmampliflca-

‘+3 be~g approached ss the initial Mach numbertlion of —
‘y+ 1

approaches infinity.

Shock perturbation.-The local inclination of the shock
from the vertical is given by equation (8). With the previ-
ously determined values of a and b (eq. (18)) inserted, and
with ky in place of. hq, the ordination is

If the local shock displacement in the z-direction relative to
the mean shock plane is called 6x(Y), then

s8X= cr dy

4pem
‘k(y+l)(m–l) COSky (21)

Thus the shock displacement curve is in phase with the
velocity perturbation in the shear wave upstream of the
shock (fig. 5).

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT

OBLIQUE- SHOCK IS SUBSONIC (~<1)

The present case is a generalization from the horizontal
wave just discussed to a wave of arbitrary inclination 0.
The restriction to a subsonic mean velocity TVbehind the
equivalent oblique shock “insuresa qualitative similarity of
the flow: the governing ‘equation is elliptic in both cases.
Accordingly, the horizontal-wave result can serve as a guide.

Governing equation and particular integral.-The govern-
ing differential equation (13) may be,written in abbroviate(l
form as

Bfu%++m =—Kue(z’i Sill Kq—B COS q) (22)
where

[
A= SIWq+2(m-1) COSP+(Z (m–l)’ sin ~

‘m

~= ~ (m–l)’ sill p

1

(23)
‘m

jlw’= 1_~2

A particular integd is seen to be

(24)

Complementary fnnction.-From the result for the hori-
zontal waye the complementary function should bo ospceto(l
to attenuate exponentially downstream of the shock, and
from physical considerations the attenuation should depoml
upon the distance measured normal to the shock front, thnt
is, upon z rather than, say, :. The functional form that has
the desired attenuation and possesses a sinusoidal bohavior
at the shock is

{
$c-e-~-Q’’Os”- .

1
qaln~) ~y [a(~ sin q+~W2 q c09 9)1 (25)

Cos

where ~ cos p—q sin pnay be recognized as just z.
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TIIe arbitrary constant a in equation (25) is determined
byaconsideration of the boundary conditions (eq. (9)): the
argument of the cosine must ieduce to K?l along the shock
front, where t=~ tan q. This requirement gives a=~ cos w/B’.
17inally,when constants of integration c’ and d’ are included,
the complementary function is written as

1[
&’q COSq)) + d’Sk=

1}
/g2 (t s~ 9+l%2q@M (0) (26)

Velocity components with undetermined oonstants.-The

complete solution for the perturbation stream function is

*=$P+#o

This e.spression(cf. eqs. (24) and (26)) contains four arbitr~
parametem a and b (which occur in A and B, respectively,
qs. (23)) and c’ and d’, which remain to be determined.
First the corrwponding compressionsfor the velocity compo-
nents wil) be obtained-they -willbe needed anyway-and
then the boundary con@ions on these velocities at the shock
wave will be applied for the determination of a, 6, c’, and d’.

The perturbation velocity components in the direction of g
and ~ are w=#~ and w’= —L?m9~~,respectively; by differentia-
tion of equations (24) and (26) there results

=“cc8q7(Em3P-qsmf)
&=A cos Kq+B sin K71+P-2t? @’

[
(csi~ p+ u%wcos p) cos

K COS y (fSiIlI#+&271 COS q)+

b’
1

(–C/?m COS ~+d Sin P) SE
K Cos q ($Srn (f+ p.’q Cos q)

d 1

.

r –~=c02$P (tcmw-lq8hl$0)
[

KCoS P (f Sill P+&v2q COS W)

i%=~-’e p
(Cff.2 COS q– d~. Sillq) COS /32 +

(CPw sin p+dpu’ cos q) sin Kcos p (Esin q+l?.lq Cosq)
s’ 1

where c’ and d’ have been absorbed for convenience into
now constants

C=C’K~u COS (f

d=’d’@W COS Q

The undertermined constants may now be considered as‘a, 6,
C,and d.

Conditions along the shock on the downstream side have
been designated by the subscript zero; here t cos P= Tsin q,
and the arguments of the exponential and sine and cosine
terms reduce to zero and W, respectively:

( )‘<& COS $9+$SiIl$0 Sill KT

‘P (28)

Evaluation of undetermined constants.-Equations (28)
must agree identically with the boundary con&tions (eqs.
(9)) imposed by the shock wave on WOand wO’. Therefore
the respective coefficients sin KVand cm Kq are to be equated;
this yields four simultaneous equations for the four undeter-
mined constants a, 6, c, and d. In the reduction of the solu-
tion to final form certain alternative forms of the oblique-
shock relations, given in appendk C, ha,ve been used. The
results are

.

(?E+DF.
a=m C’+D’

~=m OF–DE
-77qi7-

c=; D’—F’

d=; D’
2

where

(
—1+3—7

c= ~
–m)’an’-[@-1)2+-f+l ‘y+l

2(m–1)
1

sin p Cosp7+1

[ 1
D=$(m–1) l+(m—l)cosap E=$D’

(
E=2 ~–7–1

~m)+2(m_l) ~“’ ~’ ff

[ 1
&F,Fsp$ 2(m —l)iin Pcos YJ=P

(27)

(29)

“ (30)

SOLUTION WHEN FLOW DOWNSTREAM OF EQUIVALENT
OBLIQUE SHOCK IS SUPERSONIC (=>1)

TVhenthe mean velocity lT’ behind the equivalent oblique
shock is supersonic, the solution must efibit Mach waves.
If the cross-stream velocity V of the moving reference frame
is subtracted out, these waves appear to be moving down-
ward (cross-stream) with the velocity T~. If another trans-
formation of ams is made so that the reference frame is
“convected” downstrerup with the stream veloci~ ?7, then
the l~ach waves can be identified as plane sound waves
moving normal to the wave fronts with sonic velocity. Mach
waves and plane sound waves are, of course, the same
phenomena viewed relative to diflerent frames of reference.
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Governing equation and particular integral.-’lle govern-
ing equation (22) changm horn elliptic to hyperbolic when
~ aceeds unity (that is, when W is supemonic). The
particular integral is unchanged thereby and is still given
by equation (24). It is found that the find solution yields
b=O (and hence B= O), and so it is convenient to delete the
B-term at the outset; the particular integral is thus -

Complementary function.-The complementary function
satisfying equation (22) must he of the general form

#c=m+/%d +9(S–-M

- where 19m=~~. The functionjrepresents N1.achwaves
inclined downvmrd by the Mach angle p from the .@& and
the function g representsMach waves inclined upward by the
hlach angle. If attention is rdricted to the range of shear-

wave inclinations 0<0 <~~ then the g-family of Mach waves
–2

can be shown to represent disturbances overtaking the shock
wave from behind. This pioper~ is related to the fact that;
for a finiteshock strength, the hIach angle is always greater
than the angle between the shock and the f-ati. Site the
disturbances actually originate at the shock wave by virtue
of the passage therethrough of the initial shear wave, such
hfach waves cannot arise, and the g-function must be zero.
In what follows it ~ sufice to limit the discussion to the

spec~ed range 0<0 <~J since the results for the remaiping

rang130<e< —~ are re,adily obtained therefrom from sym-

metry considerations.
The function~ must reduce to

j-sin w ,

along the shock front, where t=q tan p, in order to satisfy
the boundary conditions (with b= O). A suitable comple-
ment~ function is therefore

where c“ is a constant of intee-tion.
The complete solution for the perturbation stream function

is thus

This expression contains two arbitrary parametem a (occur-
ring in A) and c“ which remain to be detemniped. First the
corresponding eqmssions for the veloci~ components will
be obtained, and then the boundary conditions on these
velocities at the shock wave will be applied for the deter-
mination of a and c“.

Velocity components with undetermined constants.-The
perturbation velocity components in the direction of f and q

are w=+q and w’ =PUVf, respectively; the eqmssions are

(32)

where the constant c“ has been absorbed into a new constant
c=c” I& cos p. The undetermined constants are now a nnd
c.

Along the shock g=q tan p, and the arguments of all cosino
terms reduce to ~; the expressions for the velocity com-
ponents w and w’ become

Evaluation of undetermined oonstants.-Equations (33)
must agree identically with the boundary conditions (eqs,
(9)) imposed by the shockwave on w. and w:. If the r&poc-
tive coefficients of sin q and cos AT are equated, there results
b=O and two simultaneous equations for a and c. Thus, tho
initial specification of b=O has been iustitbd o posterior.

The ~olutions maybe written in &e form -

O’+QF’
a=m E’+QD’

c=$D’–P’ 1
wher”e

c’=2~ 77a-2 [l+(?n-1) COS*$0]

D’=(m–l)[l+(m–1) CC@ ~]

(

3–7

)
.E’=(m-1) sin q cos q— I+mm tan q

F’=2(?.7Z-1) sin p Cosq .

~=l—p.tanp
%+tan q

=tan (~–q)

(34)

(35)

where p= cot-l~u is the Mach angle. (The definitions for D’
and F’ herein are unchanged from those included in cqs.
(30).)

RESULTS AND DISCUSSION

VZLOCITY FIZLD

The veloci~ field downstream of the shockwave, producecl
by convection of an oblique sinusoidal shear wave through
the shock, has been calculated; the results are distrib~ttcd
through the preceding sections. The main results will now
be presented in more compact form, simplified to aid in the
geometrical interpretation. (The special case of the hori-
zontal shear wave was discussed earlier.)

Frames of reference.—The analyais has been carried out
in a special frame of reference in which the flow is steudy; 011
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Perturbed shock

)

‘=-Convected

\

frome

‘=-SteOA-flow fame

FIGURE f3.-Relative motion of reference frame moving with general
downstream flow (convected frame) and reference frame of analysis
(steady-flow frame). The steady-flow frame moves downward
afong the shock front with a component velocity V and carries the
npplo pattern with it..

formulas will be given relative to this steady-flow frame.,
Also of considerable interest is a frame of reference convected
by the mean flow downstream of the shock; this frame is at
rest relative to the general mass of fluid there. The relation
between the two frames is shown in figure 6. Formulas rela-
tive to the steady-flow frame may be converted to apply to
the convected frame by means of the transformations

‘1
F--++JJ’t
?l+v

p+.+ut -
(36)

b+y+vtJ

The oriterion on ti. —Although the stream velocity U
downstream of the speciiied normal shock (fig. 1) is always
subsonic, the nature of the flow depends primarily on the
stream velocity TV downstream of the equivalent oblique
shock (figs. 2 rmd 3), which may be either subsonic or
supersonic. The velocity ~~ may also be interpreted as the
relative velocity of the steady-flow frame of reference and
the convected frame (fig. 6). Two forms of the solution for
all flow quantities thus appear, one for the subsonic range
~<1, the other for the supersonic range ~ 1. The
dividing line ~= 1 is what has been desiemated“the criterion
on ~’ at the head of this section. Since ~ depends on the
initial Nhch number U.4and the inclination 0, the equation
~= 1 gives, in effect, a relation between a critical value of
Oand ~A. The relation is conv~fiently mqmssed in terms
of m= UA/tT,which depends on ~d (see append& C):

‘Cr=’’fhms- (37)

D

8

:

m—

g-
=0

;

~

;

5
.s
.= !c;

k
s?~

v

:

FIGIJRE 7.—Upper curve shows variation with initial Maoh number
of ontical wave inclination for which W is sonic. Lower curve shows
variation of m= UdtU=tan pltan 0 with initial Mach number.

A graph of ]0.I against VA is given in figure 7.
The equations that follow, both for ~~ 1 and for ~~ 1,

obtained by use of the symmetry of the flow with respect to o
and ~.~

Resultant velocity, ~s I.—Equations (27) nmy be recast
in the form

where s
Iwl]= lVAe=amplitude of sinusoidal velocity WA in initial
shear wave
KV=K COS ~=k COS t?

s= 9A2+fl; A= A(a), B=B(b)

4-8PW ~ aPP=@l fn Tcehnfcaf Note_@ (rvhfabk sawrsedexiby the
-t WM@. _lY, h 8>@<l), end fn ff nnd# (W21), hBVObeenmrrwled. Thcw
cimra werenot cmlmdiedfn the nnmerirafmhmktfonsand cn~ of the ~t repxt.

$In all tbe am tangentdesfgnatbmsjthe qnadrantof the anglek to bedetermfnd by tb
rmped.lvesfgnaof nmnerati end denmnfnator;for exam le. a.=tar@(-B/A) is to be IE-

J’—garde-des determinedby the !dnt mndit[omesin 3,.-B/ AWE. cm &.A/~.

.
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Tlm functio=A and.B are given by equations (23) and a, b,
c, and d are the initially undetermined constants which have
been evaluated in equations (29) and (30).

Resultant veloci~, ~~ I.—Equations (32) may be recast
as follows:

where
[WAI =wAc=amplitude of sinusoidal velocity WAin initial
shear wave

~_coa e
=— A; A=A(a)m

n COSL9 sin p

m‘— c Cos(p—g)
. . .. .

#=Q-~
.

,.. - . --- .- . . . . . . . . . . . .. . -- .,-,,- -

P=Mach angle= cot-l I% —

The function A is still given by equations (23), and a and c
are evaluated in equations (34) tid (35).

Shear-wave component ,—The cosine in the S-term is con-
stant along lines y—z cot p= constant; such lines are inclined
at an angle p with the horizontal and are thus parallel to
the ,@mis. Since w is parallel to ~ and w’ is parallel to ~, it
is seen that the S-term represents a pure shear flow parallel
to the &ati. Stated otherwise, this is a rotational flow;
the rotation (or vorticity) is just Q, which was evaluated
earlier in terms of gradients of entropy and total enthalpy
(cf. eqs. (1) and (13)). The shear flow may be described
also as an incompressible, plane, transverse, sinusoidal wave.

The amplitude and phase of the shear wave are compared
with those of the initial shear wave in figure 8 for an initial
Mach number of 1.5. The amplitude ampli.iication ratio
is S and the angle of phase lead is &; both are plotted aa@nst
the initial wave inclination O. Th~e is seen to be a small
phase lead in the subsonic range (JV<l) and none at all in
the supersonic range (~>1). The amplification is nowhere
less than unitv. with a cum-like Desk of 1.73 at the smiic. .
point W=l. “ ,

Pressure-wave component.—The remaining terms in equa-
tions (38a) and (3Sb), involving the factor ~, correspond to
an irrotational veloci@ field, or potential flow. That is, if

Inclination of initiol wove, 8, deg

FIQURZ 8.—Amplification and phRJMshift of velocity in shonr wavo on
~ through shock. Initial Mach number ~A, 1.5.

the derivation is traced backward, the II-terms are found to
have come frcm the complementary function, which is a
solution of the governing equation with the vorticity Q sot
equal to zero. This part of equations (38a) and (38b)
deii.neswhat may be called a pressure wave since thcwe is
associated with it a first-order pressure field: the shear wavo
contributes nothirugto the pressure.
. The pressure -wavemaybe h~erpE&d.~%&.&st~ihtion.of I

sound waves. This interpretation is particularly mcidont
for the ease ‘~1, where the solution has bem obtained in
the form of Mach waves: if a transformation is made from
the present special frame of reference, relative to which tho
flow is steady in time, to a frame moving with the general
stream, then the Mach waves will reappear as plane sound
waves moving normal to themselves with sonic speed.

The same transformation results in somewhat more com-
plication when ~<1: the resultant pressure pattern does
not then propagate with the speed of sound, but it can be
represented (as can any two-dimensional irrotdional gM-
flow field) as a superposition of cylindrical sound wavoa
which individually propagate with sonic speed. Tho associ-
ated velocity pattern in this case exhibits the following
features, which are brought out by an examination of equa-
tions (38a): The radius vectcr in a graph of w’ against w
(hodograph) mQves in an ellipse when z is held fied and v
varied; the major and miUOraxes are ~@A I MId ff.~1WA [,

respectively. At X= O the phase angle relative to the inci-
dentishear wave is 6P. On the other hand the argunmnt of
the cosine and sine is constant along I&a y—z tan 9’= con-
stant; these are lines inclined at an angle O’ to the horizontal.
Alomz such lines the Perturbation velocitY (w, w’) rema~.
constant in direction but

–Bagthe exponent is —.
P

attenuates exp&&tially with z;
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-IT’- tiel&ity”cmm~ent ~mllel ,to sheor wave
——
----

20
, p;:&?$~t~!Jf%$yp ;heo‘,

L S&& w I m
II I 1 (Cyve:&~$jY%colY’x20) I
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wove!+4
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K I 1 I I I I I
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Imtial wove imditi~ca, B,-&g - ‘- --

FIfJUWd L1—Amplitude and pbwe. of velocity components in p~ure
Wavogmerated_by passage of shear wave through shock. Initiil
Maah number UA, 1.5. Parallel lima in inset figure are lines of
oonstant pbaw.

For the case ~>1, the velocity. pattern associated with
the pressure wave is much simpler (eqs. (38b)). The per-
turbation velocity vector (w, w’) is constant along lines
-y-z tan p’ =constant and is, in fact, normal to such lin~.
In this cnse q’=P–Mach angle, and these are just the
Mach lines (or envelopes of the sound waves); they are
inclined downward by the Mach- angle p. rel@ive .to. the ~
&mis. It will be noted that the definitions of q’, the
irdirktion dngle of the lines of-’6&tit-pti&” ~ie “it ‘

~= 1, although expresseddiihrently for ~<1 and for ml.
The amplitude and phase of the w,and w’ components of

the velocity in the pressure wave are compared with the
nmplitude of the initial shear wave in figure 9 for an initial
MaclI number of 1.5. The amplitude amplification ratios
me II and pun, respectively; II, &II, and a phase angle (lead)
3Pme plotted in the curves against the initial wave inclina-
tion 0. In the subsonic range (~<1) If and &If attenuate
mponentially with z and only the valuea for z=O are plotted.
The phase lead varies from 180° to zero in this subsonic
range and remains zero throughout the supemonic range
(—nl). A rather striking feature is the relatively small
perturbation velocity in the supersonic range. Thus,
although the. incident shear wave can give rise to a simple
sound wave upon passing into the shock wave, the particle
velocity in this sound wave amounts for most cases to 10
percent or less of the velocity in the initial shear wave for
U.=1.5.

PRE9SURE FIELD

It is slIown in appen& B that the perturbation pressure is
related to the velocity according to equation (B11); in the
present notation this becomes

ap=—pwwv j
or

(611’)

Here w, is that component of the perturbation velocity
associated with the pressure wave and directed parallel to
~ (that is, along the &&s). Equation (B1l’) may be
recognized as the linearized Bernoulli equation as limited to
the velocity in the pressure wave.

Upon substituting for ~ and W and using for Wpequations
(38a) and (38b) with the S-terms omitted, there results

where 6Pis to be taken as zero in the supersonic range of ~.
This result for the perturbation pressure is proportional to
II sec p; II has been plotted in iigure 9, together with & as a
function of wave inclination 0 for ~.= 1.5.

. DENSITY PIHLD

The density perturbation is related ,to the velocity and
entropy perturbations according to equation (B12) of appen-
&B; in the present notation this is

●

:= —TV* ~—: - (B12’)
P

The term in WPis the contribution of the pressure wave.
This term diflers from 6p/p(eq. @lI’)) by a simplefactor l/y,
so that the contribution is obtained at once from equation
(39).

The @m in 6sis thecon~.bution of the shear wave. The
&tropY perturbation & has not been &iven implicitly before,
but i{&& be obtained-from-equation- (1.la)by-use of-georne~ .. . .
rical relatiom- and the known result for u (see following sec-
tion). Upon evaluation, the term in &is found to be

8S ~ 2(~—lj*~a-e——.
u. ‘y+l ~_l

[(a tan 8–1) cos KT+
Cp

‘y-l

ZItan 8 sin FW] (40)

TEblPERATURE PIELD

The temperature perturbation follows at once from the
pressure and densi~ perturbations according to the equation
of state; the appropriate small perturbation form of the
equation is

Al-’ 6D 6P

SHOCK-WAVE PEETURBA~ON

The local perturbation in the shock inclination angle may
be written (cf. eq. (8))

U= e(a cos K&l-b sin KVY)

where a and b are evaluated in equations (29) for ~<1 and
equations (34) for ~> 1 (b=O for ~> 1).

The local shock deflection &tfrom the plane z=O is obtained
by integration of the slope u:

J
6x= u dy
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ktchnotion of inihol wovq 8, dq

FxauRE 10.—Amplitude and phase of ripples. developed in shock by
paseago of shear wa~e. Initial Mach number ~1, 1.5.

The result may be put in the form

(41)

whore ~a~= tan-l
()

~ is the phase ar@e ‘and A=2~/k is

the wave length of the initial shear wave.

For a given wave length the factor ~~ is proportion-al
to the amplitude of this sinusoidal corrugation in the shock
wave; ~~ is plotted against the initial wave inclination o
in fibwe 10. The phase angle &~ is also plotted: the
shock-wave corrugation is in phase with the initial shear
wave (~~= O) when the initial wave is horizontal (0= O).
The shock corrugation progressively lags the initial shear
wave as O is increased until the sonic condition ~= 1 is
reached; at this point tha lag is 90°, and this value is main-
tained throughout the range ~’>1 as o is increased to 90°
(vertical initial shear wave). At 0=90° the amplitude
factor ~~s has fallen to zero: a vertical sinusoidal shear
wave passing by convection through a vertical shock wave
causes no perturbation of the shock form or position.

INTENSfTY OF SOUND ~

The analysisimplies that the interaction of turbulence with
a shock wave does not give rise to any great amplification of
the fluctuation energy, but it do-= provide a transformation
from a relatively quiet form (initial turbulenm) to a relatively
noisy form (fintd turbulence plus sognd field). On an
ruxmsticscale the level of the noise generated is found to be

relatively high.U It will suflice for an order-of-magnitudo
estimate to replace the turbulent field by a single plane wave,
or Fourier component, with the same kinetic-energy dmsi~y.
Roughly this implies that the root-mean-square turbulent
velocity is to be ident%ed with 0.707lwdl.

The sound pressure is proportional to H sec p, whero II is
plotted in figure 9. The relatively high values indicated
for the subsonic range attenuate rapidly with distunco z
downstream of the shock; when x appreciably exceeds several
wave lengths, the values are negligible compared with those
in the supersonic range. A rough average over all wave
inclinations O, assuming the subsonic range contributes
nothing, gives Illsec ~ ~0.082; this value will be used in the
noise estimate.

The noise level in decibels relative to the standard mferonce
level 8p0=2 X 10-’0 atmospheres is given by

db=2010g~

()
=20 log ~ $ (42)

where the bp’s are rookmeamsquare values. By equotion
(39)

@ rm~_lwd] @ -ym
P ~(7+l)m–(7–1)

TiTm (43)

As an example the noise level genmated by the turbulcmce
passing through a normal shock in a reprosentutive super-
sonic wind tunnel will be estimated. A root-mean-square
velocity of turbulence of 1 foot per second is assunmclto mist
in the test section where the mean speed is 1400 feet pm
second and the Mach number is 1.5 (~. = 1.6). Thus
0.7071w,,Iand Ud are taken to be 1 and 1400 feet pm second,
respectively. A sumnmry of those and tho remaining pnrn-
meters of the example is

0.707 Iw.1= 1 foot per second

UA= 1400 feet per second

m=l.862 (~~A=l .5)

‘y=l.4

p= O.67Ciatmosphere (*1 atm. reservoir pressure)
.

6p0=2X 10-1o atmospheres

The estimate based on equation (43) gives a preswm
perturbation tip rm.s/p=7.50X 10-’, and by equation (42)
the correspon~~ sound pressure level is 108 decibels. This
r0pre9ent6 very intense noise, reaching a level which cnn
damage the em on continued exposure (ref. 9). This noiso

emh&rmoreatestlnmayto &e greatwnsltlvltyoftheau thanto tlmenergycontentoftho
no@ tbnstkemr-spllttlngmk In the VMnftyofa jot eagble(my, 140drclbotn)h prodllcld
by p~ flnotantlcmsofM.MJSofan apoosplwc.
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u

;k ,

Fmurm 11,—Construction for translation V to render either of two
sound-wave pattemS stationary in a main strSfUOU4.

estimato is thought to be conservative, corresponding to a
supmsotic wind tunnel with a relatively low level of turbu-
lence. It rtppeamprobable that many tunnels will consid-
erably exceed thislevel.

GENERALIZATION ‘TO OBHQUE sHo-

The anrdysisrefers to flow through a normal shock, but the
results are ensily generalized for oblique shocks. In the
oblique-shock case the component of the upstream velocity
normal to the shock plays the role of ‘UA;the component pm-
dlel to the shock is ignored in formulating the equivalent
steady-flow problem. A formal approach is to retain the
present definitions wherein Z7~is the actual upstream veloc-
ity (taken horizontal) and Oand q are referred to the horizon-
tal; the oblique shock is assumed inclined by some angle a
measured clockwise from the vertical. Then the present
formuhm will be generalized to apply to the oblique shock if
the following transformations are made:

UA4 UAcm a

e+e+cr

(p+p+a

EZLATEDPROBLEMS

The sound field produced downstream by the convection
of turbulence through a shock has been discussed. Also of
interest are sound fields incident upon a shock in the absence
of turbulence. The elementary sound disturbance is the
plane sinusoidal wave: a longitudinal wave. The pasage of
such a wave through a shock, which is an unsteady-flow
problem, can again be convetid to ~ eq~valent steady-

iow problem by transformation to a reference frame moving
vith a suitable velocity parallel to the shock front; in this
‘rame the sound-wave pattern will appear as a statiomwy
Uach wave pattern. A diagrammatic construction is shorn
n fiewe 11. ATote that either of two sound patterns of
miquely related inclinations may be rendered station~ by
~given choice of V; the two patterns may be identified with
;he two families of Mach waves in a stream of supersonic
~elocit~ V7A.

The equations for the boundary conditions at the shock
md the ~orticity behind the shock will be modified from
those for the present case of the shear wave, but the general
character of the solution will be unchanged. Thus, a shear
via-reas well as a sound wave will appear downstream of the
shock. The discussion will be carried no further here: the
solution has been obtained in reference 5 by the unsteady-
flow method.

The interaction of a sinusoidal Mach waw pattern with a
normal shock constitutes a simple special case: here the
velocity V of the moving reference frame may be taken to
be zero. This problem has been solved in general terms by
Adams (ref. 7); he limited his discussion, however, to the
vicinity immediately downstream of the shock. The char-
acter of the flovi further downstream can be inferred from the
parallel that esists between this problem and the problem
herein of the horizontal shear wave: in both cases V is zero.
The asymptotic flow far downstream is therefore a horizontal
sinusoidal shear wave. ATearthe shock the wave is modified
by transverse and axial components (with associated pres-
sure perturbations) which attenuate exponentially with dis-
tance downstream of the shock (cf. fig. 5).

According to these considerations, sinusoidal corrugations
in a wind-tunnel wall, or a plate, upstream of a plane shock
wave will generate a horizontal sinusoidal shear flow. Such
a shear flow might have applications in special experimental
work.

CONCLUDINGREIvIARKS

The effects produced by “the convection of an inclined
plane sinusoidal shear wave through a normal aho~k have
been anal~ed. Such a wave maybe interpreted as a single
spectrum component of a turbulent field; that is, the turbu-
lent field can be represented ss a superposition of such shear
waves of all orientations and wave lengths (Fourier integral).

IVhen the turbulence is convected through a shock, the
individual waves do not mutually interfere if, as specitied
herein, the intensity is sufficiently low; thus the modified
field downstream of the shock can be obtained in principle
by superposition of the modiiied individual vaves. In prac-
tice the initial wave distribution is known only statistically,
and statistical changes only can be calculated. In either
case the present anal@s of the behavior of a reprwentative
individual wave constitutes a prerequisite to the determina-
tion of the changes in the weak turbulent field.

It is found that a sinusoidal shear wave of arbhirary in-
clination as it passes into the shock gives rise downstream
to a shear wave of altered inclination and altered amplitude.
In addition, there is generated a “pressure wave”: an addi-
tional velocity field with associated pressure disturbances
that can be recognized as sound waves.
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The analysis is made in a frame of reference moving with
a certain velocity W referred to axes at rest relative to the
general mass of fluid downstream of the shock: W is the
vector sum of the reversed downstmlun velocity and the
cross-stream speed of the ripple pattern in the shock wave. ”
The results depmd crucially on whether ~ is subsonic or
supersonic: when W is subsoqic both the shear wave and
pressure wave are shifted in phase relative to the” initial
shear wave, and the pressure wave shows au exponential at-
tenuation downstream of the shock; when W is supersonic
there axe no phase shifts, and the pressure wave takes the
form of a plane, undamped, sinusoidal sound -wave.

A weak initial shear wave is found to produce a surpris-

ingly intense pressurewave or sound field downstream of tlm
shock, as measured in acoustic terms. This implies tlmt tho
convection of relatively low-intensity turbulence through L
shock will generate a very intense noise field in the down-
stream region. In an example the noise pressure level gen-
erated by turbulence in a representative supersonic wind
tunnel was estimated to be of the order of 108 decibels.

LEWIS ~IGHT PROPULSION LABORATORY
NATIONAL ADVISORY COMMITTEE FOR AERONAUTHJS

CLEVELAND, OHIO, Septier %6, 196%

APPENDIX A

SYMBOLS

The followi@ symbols are used in this report:
A
a

B
b
c
c’

c

Cf
ctt

Cp
D
D’
d
d’
E
E’
F
F’
Q
H
k

M

;
s

8
T
t
U,v

0
u,n

w

w
W,wf

function detied in eqs. (23)
parameter in shock-wave perturbation (eq. (8});

also speed of sound
function ddined in eqs. (23)
parameter in shock-wave perturbation (eq.- (8)).
function defined in eqs. (30)
function defied in eqs. (35)

parameter
(

=C”~W cos p for ~> 1
=C’KI% COS p fOr W<l )

constantof integration
constant of integration -
specific heat at constant pressure
function defined in eqs. (3o)
function deiined in eqs. (35)
pa~eter (=d’& cos q)
constant of integration
function defined in eqs. (30)
function defied in eqs. (35)
function defined in eqs. (30)
function”defined in eqs. (35)
function defied in eqs. (35)
stagnation enthalpy @er unit mas9)
wave number of shear wave in region A (incident

shear wave)
Mach number (~/a, appendix B)
vdocity rdio ~~ normfd &o& (Ud/U)
prewure
relative amplitude of refracted shear wave (see

eqs. (38a) and (38b))
entropy (per unit mass)
temperature (absolute)
time
stream velocity components in z- and y-directions

(fig. 3) (equivalent steady-flow problem)
Mach number associated with D (~/a)
perturbation velocity components in z- “and y-

directions, respectively (fig. 3)
stream veIocity in &direttion (resultant of U and

V) (equivalent steady-flow problem)
Mach number associabd with TV (W/a)
perturbation velocity components in & and q-

directions, respectively (iig. 3)

that part of w associated with pressure wave
rectangular coordinate (fig. 3)

Fr

{

J=77 77<1
I/E i7>l

ratio of specitic heats
phase. lead of pressure whve relative to incident

shear wave
phaae load of refracted shear wave relative to

incident shear wave
measure of strength of incident shear wave

(lw~l/Wd)
inclination of lines of constant phase in incident

shear wave (figs. 1, 2, 3, ~d 4)
critical value of Ofor which ~= 1 (function of ~.4)
wave number of refracted shear wave
Mach angle wociated with ~ (sin-’ (1/~)
inclined rectangular coordinates (fig. 3)
relative amplitude of velocity component w in

pressure wave (see eqs. (38a) and (38b))
fluid density
perturbation in local shock angle (fig. 4)
inclination of lines of constant phase in refraoted

shear wave
inclination of lines of constant phase in prcasum

wave
perturbation stream function
complementary function (component of #)
particular integral (component of*)
vorticity (oz—tiP) .

Subscripts:
A region A (upstream of shock)
o evaluated at shock, on downstream side
Z, Y, & v ~di@e the corr~pon~g partial derivativ~

(
au

)‘. ~.’ ‘*=Z
; an exception is KY=K cm p=

kcuso
(Ihsubscripted velocity components, pressure, and

derwi~ refer to region downstream of shock.)
Prefix
6( ) increment in ( )
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APPENpIX B

LINEAR PERTURBATION THEORY FOR ROTATIONAL FLOW

The generalized governing equation for the stream func-
tion can be obtained by extending Sears’ constant+nergy
development (ref. 6) to include the eflects of variation of
energy (total enthalpy). A ditlerent approach is, however,
employed herein. Equations for the pressure and density
fields are also obtained.

In applying the results of this appendis to the develop-
ments in the main text it is to be noted that the x- and
~-axw herein will go over, respectively, into the & and
q-axes therein; this is a consequence of the difference in
direction of the main stream in the two cases. There is a
corresponding change in the notation for the velocity com-
ponents,

GOVZRNINGEQUATION

Basio equations.-Consider the steady two-dimensional
adiabatic flow of an inviscid fluid with local veloci~ u’, o’,
pressure p, density p, temperature T, and entropy ~. ~-
sume only small perturbations from a uniform horizontal
flow such that u’= ZJ+u, v’=v, with uJU, v/U<<l, and
also bp/p, 8p/p,etc. <<1. Then the basic flow equations
may be linearized by neglecting quantities of order u/U,
and so forth, in comparison with unity. A convenient form
of these linearized equations is

lDP ~
Continuity: %+ vw+~ ~= (-M)

State: ‘=~-~
P P

(B2)

Energy: ~=0 033)

Momentum:
—p==pu%

1
w)

—pv=puuz

where D/Dt signiiiea the Lagrangian operator for differentia-
tion following the fluid motion.

Elimination of density from continuiw equation.-The
Lagrangian form of the state equation is, by virtue of the
energy equation,

1 Dp _ 1 .Dp
;Zirpm

=-$ [(u+u)p=+ Vp,]

upon linearizing, assuming p, ~d P: ~ be of compmable
magnitude, this is

1 DP uPz—— .
p Dt z

and by use of the first momentum equation

The linearized continuity equation @l) may accordingly be
written

(1–M)u+zj=o @5)

Formulation of governing equation.-Define a streamfunc-
tion # such that

U=+v
●

0=– (l–fkP)#= @36)

Then equation (B5) is identically satisfied by u and v as
defined in equation (B6). The govemihg equation for #is
now obtained by expressing the vortici~ v=—%=tl in terms
of +:

(l–fkq#=+#pu= –$-l (B7)

A useful expression of the vorticity in terms of gradients of
entropy and total enthlpy is givai in reference 10, equation
(8.3), as

-Q”%%-T2)

where g is the reaultmt velocity and b~ indicates differ-
entiation normal to a strwnli.ne. In the small-perturbation
flow the streamlines are approximated by the lines y=con-
stant, so that b/tins b~; also q= ~. Thus

-“=$R-T%)

The governing equation for #, equation (B7), can now be
mnplitied b read

EV–T8*
(1–M%hs++.=–fl- u (138)

This equikion and its companion

U=+v (B6)

0= —(1—iw)+.

constitute the simplMed generalization of Sears’ governing
equation for linearized rotational flow (ref. 6, eqs. (12) and “
(15)); Sears’ equation is restricted to flows of Wnstant total
enthalpy E.

Equation (338) exhibits the following very interesting
property: In th wn.d-pertuxbaiion velocity@h? comidered here
the effect of the rotation or vortieiiy $2i8 independent of how it
atitx, wtifiom a gradient‘of entropy or a gradient of tai?ul
enthalpy, or a combindm of botli. And ii is only throughtheir
wntrihdion to Q (and p6Tbp8 to the boundary conddti) thu$
variutti in entropy and total en.thaljqia$ect the velocityjield
at d.
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Equations relating the pressure distribution to the ~elocity
distribution will now be derived: The momentum equations
(B4) maybe rewritten in the form:

fi+uu== o
P

\ (B9)
lk+u~= –UQ
P J

since fl=oz-~.

ISow let consideration be limited to special types of flow such
that .

U=u’+u”

I
(B1O)

V=u’

where u’, v’ is an irrotatiomd flow (o’. —u’F= O) and
utf ——u” (y) is n pure shear flow parallel to z (v”=o).7 Then’
the vorticity Q is given by

!il=vz-~=-u”u

and
.Ut?z=o

Thus equations (B9) become

~= Uu’== o#-

Pu Uu’v= o~+

These two equationa are equivalent to

;+ UU’=0 (1311)

rSh@3Hand8i U’eCom&ntSk@’shmdiIM (ref. 10), this approximate the general
sme.11-pertnrLmtIonflowto the extent that the k g-constant approxknate shwmlim.

which is just the linearized Bernoulli equation in terms u’

alone.

Thephysical interpretatti h this: If i%eamum-ecltotui?per-
turbq%m con&?ts of a phme 8h.euT@w (u”, 0) and a potenf?kl

jhno (u’, Q’), then thtre h no pnwure perturbation aa800iatd
with the shearjbw; the entire pressure paturhiion arks from
the potential @w and is relutedto u’ bIIthe ordina~ linearized
Bernoulli equuiwn. -In otherwora%,the premure h obtainedlqI
wdtracting out the shear-jlow velody and applfing the linear-
ized Bernow.lJiequation to the remaining velocity.

DENSITY PI=D

The density distribution cartbe related to the velocity and
entropy distributions as follows: The starting point is tho
differential equation of state (332)

Again assume that the flow is rLcombined potential flow
(u’, v’)and shear flow (u’’, O)? (See eqs. (B1O) and after.)
Then equation (B1l) applk for tip/p,and the density field
is given by

L?p Uu’ 68
—. ——
P a= ‘~

or

6P- -#L’ 68—. — ——
P u c,

(-B12)

Thus ii ti fownd t.huithe o%witg perturbation depends on the
potentialjlow via tti velooiiy perturbation u’ and on the shear
jO10% the &O~ l.WtUTbdiOJL68.

: SIIIMH rmd 8 are constant along streaudlnce(rd. 10), thla npproslmatcsthe gmieml
mnall-rwtnrhtion flowto the intent that the llnm9- mmtant approximatestrwnllncs,

APPENDIX c
VARIANTS OF THE SHOCK RELATIONS

The ratio of the normal velocities before and after the
shock has been deiined as m:

m= u*/u (cl)

Thus by reference 8, equation (114),

(C2)

where ~* is the normal Mach number ahead of the shock.
Correspondingly, ~ is the normal Mach number behind the
shock, rmdby reference 8, equation (112),

1+? D.’
r= (C3)

— 2 ‘y-l
TUA —~

From equations (C2) and (C3) it can be shown that
3 n

;=(~+l){m–l)
(C4)

and
u.’– 1 ~

=7n —
7—1 ~A9

(C6)
1+7

where
p=l–ng

The equfdity of transveme velocity components across an
obIique&ock wave requires, in the present notation, thnt

UAtanf3=Utanfp

Then, with the detlnition (Cl),

?72tan e=tan p (c6)

Equations (C2) and (C6) together allow q to be determined
in terInSOf 8 and VA.
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